

Abstract

In this thesis we are going to discuss how from the idea of having a commu-
nity platform for TigerJython the first MVP (minimum viable product) pro-
totype emerged. TigerJython Community consists of two parts. The com-
munity part will serve as a platform for users to share their projects, and
have discussion of new ideas. The other part is a central information hub.
At the moment, information about TigerJython is spread across numerous
websites. TigerJython Community should serve as the central point of in-
formation such that it is easier for educators and parents to find what they
want to know. In the process of this thesis we collected the requirements
needed for such a platform, went through the design process by discussing
the thoughts behind the system architecture, the user experience, and how
the mock-ups for TigerJython Community’s user interface were created. Fi-
nally, we look at how the whole platform was implemented and discuss how
and why we chose the frameworks we used.

Contents

Contents

1 Introduction
1.1 The Goal of TigerJython Community
1.2 RelatedWork e
1.3 ProjectOutline

2 Specification and Design

21 SystemDesign
211 Requirements
2.1.2 SystemArchitecture

2.2 UserEXperience. v i v i i v i it e e
221 FieldsofUX
2.2.2 Information Architecture,
2.2.3 InteractionDesign

2.3 Userinterface
231 Visuallanguage
232 Wireframes
233 Mockups
2.3.4 Prototypes

Implementation

31 FrontEnd e
311 Introductiono
302 Setup ...
313 Features

32 BackEnd
321 Procedure
322 Structuring Lo

3.2.3 FeaturesoftheAPl,

NN a2 -

O VW W OWbhbwww

. A
N r®

CONTENTS

Vi

4 Findings

41 Vulnerabilities
411 Cross-Site Scripting (XSS)

4.2 Data Privacy

421 Userprotection.
4.2.2 MultiModule Dependencies
4.3 MisusePrevention

5 Conclusion and Future Work

5.1 Conclusion

5.2 Difficulties during Implementation

5.3 Future Work
Bibliography

Appendix

41
41
41
43
43
43
44

45
45
45
46

49

53

Chapter1

Introduction

Computer Science was included in the Swiss curriculum with the Lehrplan 21 [1].
One of the main themes of the curriculum is programming. Python is often the
language of choice for educational purposes, for its simplicity and easy to under-
stand syntax. This is also the case for one of the textbooks for high school students
offered by the ABZ (educational and counselling center for computer science edu-
cation) of ETH Zurich. The language is taught with the help of WebTigerJython or
with TigerJython.

TigerJython has been an established name in educational programming of high
schooland gymnasiums in Switzerland for several years. With the growing interest
in the world of TigerJython, a platform that gathers information about it is highly
requested. So the idea of TigerJython Community was born.

1.1 The Goal of TigerJython Community

TigerJython Community has several purposes. One of the core features is the com-
munity platform. This is more or less build with common social medias in mind.
Users are able to share their ideas, post their Python modules, and hold discus-
sions in the comment section. Another part of TigerJython Community is to pro-
vided information about the world of TigerJython. It serves as a central platform
to provide information for educators, parents, and students alike.

With the of this platform we hope to accomplish a more engaging and interest-
ing learning environment. Students can share their projects to a wider audience
and receive feedback. But also get inspired by posts of other users. For educators
and parents, on the other hand, it provides central point of information. Instead of
splitting the information into several websites, as it is right now, all the informa-
tion about TigerJython can be found at one place. This also increases the visibility
of TigerJython tremendously and possibly the impact on computer science edu-
cation as a whole.

1. INTRODUCTION

1.2 Related Work

TigerJython is not the first to try to accomplish such a platform. There are two no-
table platforms which share similar features as we try to achieve with TigerJython
Community.

Greenfootisa projectin the Programming, Education Tools Group, part of the Com-
puting Education Research Group at the School of Computing, University of Kentin
Cantebury UK [2]. It teaches object orientation with Java. On their online platform
they provided a platform to share ‘Scenarios’ and hold discussions about topics.

Scratchis designed, developed, and moderated by the Lifelong Kindergarten Group
at MIT Media Lab [3]. It is designed especially for ages 8 to 16, but is used by peo-
ple of all ages. It is the largest and most well-known educational programming
language. The team of Scratch has just recently built a new platform which fulfills
a similar purpose as what we want to achieve with TigerJython Community. That
is why Scratch had an important role as an orientation point.

We analyzed Scratch quite thoroughly before we wrote our requirements docu-
ment. A large part of our requirements come directly from analyzing Scratch. An-
other part where Scratch was our guide, was to choose the frameworks and system
architecture. Scratch is built in React.js and communicates with the server via web
API. This led us to choosing similar technologies and system architecture.

As we analyzed Scratch, we also found flaws that we wanted to avoid. This is es-
pecially true in the user experience and user interface. So Scratch not only helped
as a guide on how to build the platform but also on what we have to avoid.

1.3 Project Outline

Development of TigerJython Community was split in several steps. The first part
was building a foundation. One of the main parts of this is information gathering.
We analyzed competing platforms for their strengths and weaknesses and created
a detailed requirements sheet with the help of our findings. With the given re-
quirements sheet we could start looking for a suitable framework and data models.
Based on the findings of the first step, we started to think about the user interface
and user interaction with TigerJython Community. The majority of the target users
of TigerJython Community is in the range of ages 12 to 18. So we had to think about
a user interface which is easy to understand for children new to the web but also
interesting enough for well experienced children. Further, we developed a visual
language, which was both modern but also playful to give the students an inviting
atmosphere. After the design step, we started with the implementation.

Chapter 2

Specification and Design

This chapter is split into three parts. In these parts we look at the system design,
user experience, and user interface design. That is, we discuss how the whole sys-
tem is structured and how all the different parts work together.

2.1 System Design

Before we started with the actual design of the entire system, we had to be clear
about all the requirements that had to be fulfilled. So the first part of the system
design was mainly analyzing competing platforms and finding all the requirements
that were needed to deploy TigerJython Community successfully.

The requirements we defined during this process went way beyond what was actu-
ally developed during this thesis. The reason for this was that we wanted to define
a strong foundation not only for the project involved in this thesis but also later on.
All requirements helped to find a suitable system architecture for this project.

2.1.1 Requirements

The TigerJython Community platform serves two purposes. One is the commu-
nity platform, where users could not only share their TigerJython projects but also
discuss ideas, or seek help if needed. The other purpose is information gathering.
TigerJython Community should serve as the central entity for information about
the world of TigerJython.

Based on the purposes of TigerJython Community, we could find all the feature-
function requirements. The feature-function requirements are all the requirements
that the system has to satisfy in order for the user to achieve her/his goal. Such re-
quirements are: being able to view, edit, and add posts; all the commenting func-
tionality; finding information about TigerJython; the whole register and login func-
tionalities; etc.

2. SPECIFICATION AND DESIGN

From the feature-function requirements we could derive requirements about user
access, security, and privacy. Since the platform is focused on working with mi-
nors, we had to focus especially hard on privacy and security. Here we also de-
fined requirements about the content safety. That is, being able to report abuse or
inappropriate content to community administrators.

The Ul and UX requirements focused on all the requirements needed to provide
a good usability of the over all application. Defining those requirements helped
to develop user flows, wireframes, mockups, and prototypes, as discussed in user
experience and user interface sections.

After all the user focused requirements, we could start finding requirements about
the system itself. That is, we defined requirements that guarantee good perfor-
mance, scalability, and modularity. But also information security such as no direct
access to the database or saved files, or that passwords are never visible as plain
text.

At last, we defined support and maintenance requirements, which will help the
platform to be more future-proof. This includes the requirement for documenta-
tions.

2.1.2 System Architecture

Our system architecture is heavily based on our requirements. So our architecture
should not only satisfy performance, scalability, and modularity, but also main-
tainability.

Structure

First, we wanted to find the best way to render our web page. Most web pages can
be described in three different types. The server-side dynamic web page is one of
the currently most used types, but starts to decline. In a server-side dynamic web
page, the HTML pages are created dynamically on the server, with the help of a
server-side programming language and typically also a “templating engine", such
as WordPress or Django [4]. The benefit of dynamic web pages is that the user only
sees what she/he has to see. Most of the things are handled on the server-side and,
thus, it is really hard to manipulate the content. The downside of this approach is
though that all the pages have to be rendered dynamically for each user request,
this leads to poor performance and the system is not really scalable [5]. Figure 2.1
shows the basic schematics of a dynamic web page.

2.1. System Design

Generate on the

Server p server

<HTML>

Request

Client (Browser)

Figure 2.1: Example schematics of a dynamic web page

The oldest type, but still often used, is a static page. All the content is on the server
in form of HTML files. Such systems are either written directly in HTML, or gener-
ated with static-side generators. These systems have excellent performance and
can scale without problems. The huge downside is that they are not dynamic. You
cannot serve user specific content with this type of system [5]. Figure 2.2 shows
the basic schematics of a static page.

Server

HTML>|

Request

<HTML>

Client (Browser)

Figure 2.2: Example schematics of a static page

The newest type is SPA, or single-page application. It is also a type of dynamic
web page but compared to the server-side dynamic web page in these systems the
web application is rendered on the client-side [4]. With these systems the initial
request can take really long because the whole front-end engine has to be taken

2. SPECIFICATION AND DESIGN

from the server, but after this is done the system only requests small parts of the
content form the server via an APl and the rest is dynamically generated on the
user’s computer. The benefits of this system are that after the initial step it has
excellent performance since only little content has to be fetched from the server.
This system is also capable to run offline to a certain degree after the initial step.
It is also scalable and can be built modular [6]. The modularity also goes further
than just the web application. Since the front-end is decoupled from the back-end,
compared to server-side dynamic pages, the server-side system architecture is in-
dependent of the front-end. Only the communication interface has to be defined.
But the SPA also has a massive downside. The application is running on the client-
side, thus, all security relevant matters, e.g. authentication, cannot be handled by
this application. Figure 2.3 shows the basic schematics of a SPA which fetches the
content form an API.

Server API

o]
@ -
s 3
z 3
8 g
o a
2 3
= 4

Re-render page in

<HTML>

Request

{Js}

Request JS

Client (Browser) browser

Figure 2.3: Example schematics of a single-page application

We compared all the benefits and downsides of those three types with our needs,
and found out that none of them really fits. So instead of a “pure type” we chose
a mix between a static page and a single-page application. This mix is called an
universal application. Here, as much content as possible is served statically and
the restis dynamic. So we ended up with having two server-side applications, one
serving the universal application and the other serving the API. The schematics of
the system structure can be found in Figure 2.4. We have a more detailed discus-
sion about universal applications in Chapter 3.

2.1. System Design

Send a GET request Render application with components

Return rendered HTML
Send request to get data
Return data in JSON format

User Request JS bundle

Return JS files Front-end Server
Re-render with data

Send direct request

Process JS and handle Return response
client-side rendering

Back-end API

Get static files Return static files

Handel request Response
Get static files

Return static files . -
Static User Files

Back-end Service
Handler

Request to

Save static Files database Response

Back-end Database
Handler

Save data / Request data

Return data
Database

Figure 2.4: Schematics of the TigerJython Community’s system structure

Web API Architectures

A web API is an application programming interface which can be accessed using
the HTTP protocol. The API defines endpoints, and valid request and response for-
mats. There are quite a few web APl architectures, but we will list just a few of them
and the reasons why we chose REST for this project.

GraphQL [7]is a query language for an API, developed by Facebook in 2012. A
GraphQL service is created by defining types and fields on those types, then pro-
viding functions for each field and each type. Once a GraphQL service is running
(typically ata URL on a web service), it can receive GraphQL queries to validate and
execute. A received query is first checked to ensure it only refers to the types and
fields defined, then runs the provided functions to produce a result.

gRPC [8]isaremote procedure call system, initially developed by Google in 2015.
Itis not an API like the others but rather a protocol that can be used by a program
to request a service from a program on a different computer without the need to
understand the details of the network. gRPC uses protocol buffers as the inter-
face definition language for describing both the service interface and the structure
of the payload messages. Protocol buffers are a mechanism to serialize structure
data in form of a stream of bytes. They have the same purpose as XML but are

2. SPECIFICATION AND DESIGN

smaller and faster. gRPC was initially not intended to be used as a web API but
rather as a communication protocol between microservices.

REST [9]standsforrepresentational state transfer and was first presented by Roy
Fielding in 2000. REST is not as strictly defined as GraphQL or gRPC but rather an
architectural style defined by its constrains. Those constraints are:

« Uniform interface. Thisis the key constrain that differentiates between REST
APIs and Non-REST APIs. The interface should be resource based, that is,
individual resources are identified in a requested endpoint. The resources
should be manipulable through their representation, that is, the client has
enough information to delete or update the resource. The messages should
be self-descriptive, that is, the messages contain enough information such
that the server can process them. And last, the response from the APl should
include a link to other resources. With this last constraint we did not fully
comply in the TigerJython API.

+ Stateless. This means the necessary state to handle the request is contained
within the request itself and the server would not store anything related to
the session. An example for this is the usage of tokens in the authentication
process. Each request contains the token, this way the server does not have
to store the state of the user, but just has to check whether the token is still
valid.

+ Cacheable. Every response should contain whether it can be cached on the
client side or not.

+ Client-Server. The REST application should have a client-server architecture.
In our architecture the client of the APl is the front-end server. The front-end
server can be seen as the client since the only functionality of it is rendering
the web application.

+ Layered system. The application architecture should be composed of mul-
tiple layers. Each layer does not know anything about any layer other than
the layer is it connected to.

Conclusion REST isone of the oldest web APl architectures and was the web API
architecture of choice in many frameworks. This is also the main reason why we
chose REST over the more modern GraphQL and gRPC. This makes maintenance of
TigerJython a lot easier. So we chose to trade better performance and scalability
of the GraphQL or gRPC with easier support and maintainability of the REST API to
guarantee a more future-proof service.

2.2. User Experience

2.2 User Experience

User Experience is a term often used in combination with web and application de-
sign but also refers to the user experience with any particular product, system, or
service. User Experience or mostly just written as UX is the study of user-product
experience. That is, having a deep understanding of users, what they need, what
they value, their abilities, and also their limitations [10]. For simplicity, we are go-
ing to focus only on user experience with websites in this thesis.

2.2.1 Fields of UX

User Experience design includes, among others, interaction design, information
architecture, and visual design. Interaction design is the field of study of how user
interacts with a particular product. Part of this field of study are the user flows,
the task flows, or wireflows, which we are going to learn more about later on. In-
formation architecture focuses on organizing, structuring, and labeling content in
an effective and sustainable way. The goal is to help users find information and
complete tasks [11]. Visual design focuses on catching the user’s attention with the
help of aesthetics, such asimages, fonts, etc. The visual part of TigerJython will be
discussed in Section 2.3.

2.2.2 Information Architecture

Information architecture focuses on organizing, structuring, and labeling content.
The goal is to help the users find information and complete tasks [11]. The part of
information architecture was heavily integrated with the following section about
user interface design, or be more precise with wireframing.

Before organizing and structuring the information on the different subpages, we
created a rough structure of all the subpages and how they are connected. The
structure was created based on the requirements document developed in the sys-
tem design (shown in Figure 2.5). Even though only parts of this was later used in
the Ul design process, and implementation, it helped to organize the information
more future-proof. So the design is based on an information architecture which
won’t break easily when TigerJython Community is extended later on.

2. SPECIFICATION AND DESIGN

10

Home Explore View post Edit post

Add post User public profile Chat

Ideas View idea Editidea

Add idea
Footer-only links

Create Examples
Community guidelines

Tutorials
Statistics

WebTigerJython
FAQ

TigerJython (s/w) .
mprint
Privacy & Terms
About For Parents
Brand guidelines
For Educators
For Developers

Press/News Article

Credits

Login Forgot password Set password

OAuth Page

Create account Community guidelines
Profile Following
Followers
Friends
Edit Profile Change password
My public profile
Add module (upload)

Edit module

Figure 2.5: Page structure of TigerJython Community

2.2.3 Interaction Design

One of the main tools that was used during the development of TigerJython Com-
munity platform, were flowcharts. Flowcharts play an important role in interac-
tion design, since they are one of the simplest and clearest ways to represent the
interaction with an interface. Studying the interaction with the user interface of
TigerJython Community, not only helps to design the user interface itself but also
in programming the web application by providing a clear path of how a user should
or will navigate through the website. The flowcharts also help to understand how
the alternate states of the website should work.

A flowchart can be formally defined as: “A diagram of sequence of movements or
actions of people or things involved in a complex system or activity” [12]. In this
case we used two types of flowcharts; the task flow and the user flow. They are
similar in nature. The goal of both is to optimize user’s ability to accomplish a task

2.2. User Experience

with the least amount of friction. Also, both help to think through the design before
the feature is developed.

The task flow is a single flow completed similarly by all users for a specific action.
A good example for this is the sign up process. Since they are a singular flow, as
compared to the user flow, they don’t branch out. The user flow on the other hand
isthe path a user follows through an application or website. The flow does not have
to be linear, it can branch out in a non-linear path with several endings. Defining
these paths can help to see possible turns through the route and one can optimize
the user experience overall. User flows can start off simple and help determine
so-called red routes. That is, the key user journeys.

Task Flow

As already mentioned, a task flow is the interaction path with a specific process.
For the TigerJython Community platform, we only studied specific processes in a
task flow. One is the login/sign-up process and the other is the posting process.
There are a few other processes that could be studied in a task flow, such as lo-
gout or posting comments, but those are really straight forward and, thus, only
explained in the implementation chapter (Chapter 3); or, as for example posting a
comment, really similar to the post process.

Login/Sign-up Process In the login/sing-up process we already thought out the
option of adding OAuth services to TigerJython Community. The main reason for
this is not to add common OAuth services such as Google or Facebook, but rather
school logins in form of a similar solution as SWITCHaai but for secondary school
and gymnasium.

n

2. SPECIFICATION AND DESIGN

Main Navigation Login

Forgot Password OAuth sign-in

[S onuthpermisons

Community Guidelines

User Profile

Account confirmation

The users has 24 hours to confirm
the account. After the timeout is
reach the users account is banned
from all activities. When the user
logs into his account a prompt will
be display that the user has to
confirm the account to lift the ban.
Here the user has the option to send
a new confirmation URL.

Account confirmation

Figure 2.6: Task Flow of the login/sing-up process

Post Process The module post process is fairly straight forward. A similar pro-
cess exists for idea posts or comments, but we only included the module post pro-
cess since it also includes the module handling in addition to the post content it-

self.
\®
@ No module found Create module ‘;CH)
o /)
(J b Create post m
Post view Model view
Figure 2.7: Task Flow of the posting process
User Flow

The user flow analyses the complete user interaction with the product. It does not
look on specific task processes. For example, when the login action happensin a
user flow, only the end-result of this action is mentioned but not the intermediate
steps in between. So one can see the user flow as the combination of all the task
flows, where the task flows are handled as a black box with a certain action and a

12

2.3. User Interface

followingresult. Studying the user flow helps us understand how users will interact
with the TigerJython Community platform and also help us find difficulties in the
user experience early on.

Since the user flow of the TigerJython Community platform is quite massive, we
cut it into several pieces. In Figure 2.8 shows the user flow of the login and sign-
up. The full user flow of TigerJython Community can be found in the appendix.

1.1 Sign in / Sign up

Login sign Up

Forgot Passwor d Set Passwor d Usage Agreement t

Figure 2.8: The user flow of the login and sign-up

2.3 UserInterface

Developing the user interface of TigerJython Community was a bit tricky, since we
could not expect the users to have experience in the web. The target user group is
between age 12 to 18, but even though in today’s world most children have at least
some experience with the Internet, we cannot assume that. Especially in the coun-
tryside many children still grow up with barely any contact with the Internet. So
the challenge was to develop a user interface which is intuitive for inexperienced
users, looks modern and somewhat similar to well-established social medias, but
also playful to catch the students’ attention.

13

2. SPECIFICATION AND DESIGN

14

2.3.1 Visual Language

TigerJython is meant for young people to learn the basics of programming. To em-
pathize this aspect, the main color palette of TigerJython contains fresh and bright
colors.

The name TigerJython is a combination of “Tiger" and “Jython", which is derived
from “Python". Tigers and Pythons are generally associated with jungle that is why
this is also the major topic in the visual language of TigerJython Community.

The tiger was also chosen as the mascot of TigerJython. It is generally depicted as
a teenager to further empathize the general age of the TigerJython users.

Figure 2.9: An example illustration with the TigerJython mascot

The goal with this visual language was to create an eye-catching user interface,
which is modern with a bit of playfulness. This visual language had several chal-
lenges. We wanted to have a modern and clean user interface, with bright colors
and eye-catching elements. Bringing this slightly contradicting elements together
was not so easy. Building a website which was very modern and clean has a bad
effect on the experience of teenagers since it looks too boring and more like some-
thing adults would use. At the same time having a user interface which is too play-
ful seems more like something children would use. So the challenge was to create
a good mixture of both worlds.

Another challenge was to stay professional, since it is a product that will be used
in the school. So building a user interface which will catch a teenager’s attention,
may not make a good impression on educators, since it is a bit too playful and

2.3. User Interface

distracting.

Then we also have the social challenge. Computer Science is a topic which in our
society is heavily biased to being a man’s world and also has some social stigma for
being nerdy and full of introverted people. So while developing the user interface
we carefully selected the design elements to free it from this social perceptions
and build a design system which tries to be inviting for everyone and not biased
towards some gender or interest group.

We have included an idea of a branding guideline for TigerJython in the appendix.
It shows a possible branding for TigerJython based on the thoughts discussed in
this section.

2.3.2 Wireframes

Wireframing is an important tool for product development. It gives a general idea
of the product early on and can help to keep everyone on the same page. This is
especially important in larger teams consisting of product managers, designers,
and engineers. In TigerJython Community it helped a lot in structuring the page
roughly before working on the more complex and time-consuming mockups.

Wireframes can be really simple. Often they are just a quick sketch on scratch pa-
per. How they are created is not important. Important is what they achieve. Wire-
frames can be looked at as the “blueprint for design" (Figure 2.10 shows an exam-
ple of a wireframe). They are the connection point between the underlying con-
ceptual structure (or information architecture, as discussed in Section 2.2.2) and
the surface of a website or mobile app. More specifically, they visually represent
the interface, and are used to communicate the following details:

15

2. SPECIFICATION AND DESIGN

16

B e e secon vew neo . =

Figure 2.10: A wireframe example for WebTigerJython

Structure - How will the pieces of this site be put together?

Content - What will be displayed on the site?

Information hierarchy - How is this information organized and displayed?

Functionality - How will this interface work?
« Behavior - How does it interact with the user? And how does it behave?

Wireframes are not supposed to represent the visual design, contact graphic ele-
ments, or convey the brand or identity. They are just content wired together to
build a layout, hence, the name.

How to create a wireframe

There are many ways to create a wireframe. One of the most basic, but still often
used, approach is sketching. Pen and paper wireframing is often the method of
choice in meetings or while brainstorming. The downside of sketching is that iter-
ating over different structures is hard, since they cannot easily be reused. So often
specific wireframing software or just standard graphic design software is used to
create wireframes. Here a designer can use component libraries and can iterate
quickly over different layouts.

Wireframes with User Flows

We have already seen wireframes in the previous section. Wireframes are often
used for flowcharting. Sometimes words alone cannot communicate a behavior

2.3. User Interface

of a complex system. This is especially true with user flows. Describing a user flow
with text or just named squares is hard and, thus, often wireframes and user flows
are integrated with each other to provide a clearer understanding of the user flow.

Wireframes in TigerJython Community
We used wireframes to explain:
+ how the content is grouped
+ how the information is structured
+ the most basic visuals involved in the Ul interaction

The purpose was to map out concretely how TigerJython Community should be
designed, before any mockups or prototypes are created. Here we will discuss
some wireframes that were created and the reason behind the specific structure.

Base Structure Thewhole TigerJython Community platform was structured with
the mobile-first approach. That s, the wireframes are created for the screen size of
smart phones, and later extended for desktops as well. This approach was suitable
for TigerJython Community because of the main userbase of the platform.

Today, users between age 12 to 18 are used to phones and most students already
own a smart phone. So it can be expected that the majority of the users will be
using the platform through a smart phone. Another reason why the TigerJython
Community was structured in a mobile-first approach is that structuring the infor-
mation on mobile devices is a lot harder than on desktop because of the limited
screen size. Thus, the decision which information is important and which is not,
has to be made early on. The less important information and content can then be
added when scaling to larger screen sizes.

The mobile-first approach also has the benefit of being responsive early on, since
the mobile optimized website can be used easily on a desktop but not vice versa.

While structuring the content on all the different subpages of the platform, we also
put a lot of thought into the navigation of the website. TigerJython Community
has to cover two quite different interest groups. One is the main userbase of the
community part of the platform, that is the sharing and discussing of TigerJython
projects and ideas. And on the other hand, it is the “information seekers”, such as
teachers or parents, who are mainly interested in the static information provided
by the platform. The usability aspects of those two types of websites is quite dif-
ferent. The community platform has to be inviting to the user to share and explore,
whereas the static parts have to provide the sought information. Buttons, such as
“Create a new post”, are unnecessary and distracting for the user. On desktop this
can easily be solved with a buttons placed on the screen, when using the commu-
nity part of the platform. But on mobile devices this is a lot harder because of the
limited space available.

17

2. SPECIFICATION AND DESIGN

18

The solution we came up with is that we made an adaptive header and navigation
based on which part the user is currently on. The downside of this approach is
though that we break the navigation flow. Buttons and links move around when
switching from the static content to the community area, but since most users
won’t switch frequently between the static content and the community area this
is negligible.

Q Explore a < Explore Post a LOGO a
(rotiown, e boputar wacent HLIJIguriL ue 1do

@loremipsum

Share Ideas and Code.
Get to know the Community.

Qs @ o S

Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation
ullameo laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit
+ Tags in voluptate velit esse cillum dolore eu fugiat

Explore Ideas Create About < Explore Ideas Create About

Community Overview Navigation Community Post Navigation Information Navigation

Figure 2.11: Wireframes for the adaptive header and footer navigation on mobile devices

2.3.3 Mockups

Mockups are really similar to wireframes. During the creation of wireframes, the
main focus point is the information hierarchy, the content grouping, and working
out the core functionality of the product. Mockups can be seen as an extension or
additional layer to a wireframe. It brings in the visual details and defines how the
product will look at the end.

Generally, mockups are made before any interactionis added. So they can beiden-
tified by their visual sophistication but total lack of interactivity.

Decisions about fonts, color schemes, brand assets, content layout, navigation
pattern styles, etc. will be worked out in a mockup. Basically, the mockup takes
the bare-bone structure of the wireframe and gives it something to wear.

Mockups help to define a clear visual language and make the development process
of the front-end a lot smoother, since all the thoughts about where to place what
and how it should look are already made.

2.3. User Interface

How to mock up a Ul

A mockup can be achieved in a few different ways. Since it is just a static image,
any tool that can generate a static image is useful. But each of which comes with
its advantages and disadvantages. For TigerJython Community we used a design
software.

This has the benefit that the creation can be done really fast and when you have
to iterate over different versions, the previous mockups can easily be reused and
changed. The downers are that the mockup at the end can look great, butis hard to
implementin the actual world. Placing buttons, texts, and illustrations somewhere
on a staticimage is simple, doing the samein the actual product can be really hard,
on the other hand.

During the creation process, mockups can often run into problems:

+ Expecting the mockup to communicate functionality. The mockup is a static
image, thus, interactions are often hard to show. This problem can be solved
via means of prototyping as discussed later.

+ Feature bloat. It’s easy to add new buttons or links to a static image until too
many features are in the design.

+ Failing to solve the problem. The actual problem the design has to solve can
easily be forgotten during the creation process, because the focus was too
much on the look.

Mockups in TigerJython Community

We created the mockups in TigerJython Community hand in hand with the wire-
frames. So many thoughts about the visual structure, paddings, and margins, were
already present in the wireframes. And the mockup process just added the color
scheme, and illustrations.

We chose to this because iterating over different positions, font sizes, etc. was a
lot easier in the simpler wireframes, and the design process of the Ul itself could
be greatly increased.

When creating the mockups, we could directly apply the thought made during the
development of the visual language, as discussed earlier. The main colors of the
design are a bright orange and green. The orange stands for ‘Tiger’ and the green
for ‘Jungle’. We tried to find a consistent usage of the colors, so even though the
navigation flow of TigerJython Community could not be guaranteed, all the sub-
pages still feel connected and have consistent look and feel.

19

2. SPECIFICATION AND DESIGN

20

Figure 2.12: Showcase of mockups for mobile devices

The colors were also used in the various illustrations on the platform. We created
the illustrations in a way that it was also consistent with the platform theme but
also help the user find her/his path through TigerJython Community.

During creating the mockups and wireframes, we frequently run into the problem
that we had to many things that had to be on the screen. Lucky because the we
chose a mobile-first approach, we realized this before we bloated the design with
features.

Because our wireframes are already quite sophisticated but lack the ‘beauty’ of a
mockup, we could easily focus on the solving the problem instead of having a beau-
tiful design. In the mockup process we then tried to change as little as possible and
make it just visual pleasing.

WELCOME TO

TigerJython

(=

& logoipsum’ [HOGO & (ogoipsum

c -

Figure 2.13: Showcase of a desktop mockup from the TigerJython Community landing page

2.3. User Interface

2.3.4 Prototypes

Prototypes bring the interaction to the Ul. Here we define which element links to
which page, where a pop-up shows up, etc. Often, the various effects while using
a website are also defined in this stage.

Normally, prototyping starts after the mockups are created. For TigerJython Com-
munity we already introduced basic interaction in the stage of wireframing. The
reason for this was that our wireframes are already almost complete mockups just
with the lack of design patterns. So it made sense to add interactions to find flaws
early on.

Aside from linking the subpages with each other, not much else was defined in our
prototyping step. We only defined a few simple effects such as how the navigation
opens and closes.

Figure 2.14: A screenshot of all the interaction routes in the TigerJython Community prototype

21

Chapter 3

Implementation

In this chapter we are looking at the implementation process. Additionally to the
way we implemented TigerJython Community, we also discuss the reasons why
we chose those specific frameworks we used and why not others.

3.1 Front-End

In this section of the implementation chapter we are going to discuss the front-
end of TigerJython Community. The front-end does not only consist of the parts
the user interacts with but also all the logic that connects the browser with the
server.

Not everything discussed in this section is front-end related. We will also include
the back-end of the universal application. We chose to do because it is so closely
connected with the front-end that it did not make much sense to split it apart.

3.1.1 Introduction

The upcoming of modern JavaScript frameworks such as React.js and Vue.js, which
was used in this project, has transformed front-end web development significantly.
These frameworks introduced SPA (Single Page Applications) that is basically the
dynamic loading of the content in web pages without a full reload of the browser.

The main concept behind most Single Page Applications is Client-Side Rendering
(CSR). In Client-Side Rendering, the majority of content is rendered in a browser
instead of a server using JavaScript; on page load, the content doesn’t load initially
until the JavaScript has been fully downloaded and renders the rest of the website.

Client-Side Rendering is a relatively recent concept and there are trade-offs asso-
ciated with its use. One trade-off and the main reason why it is a relatively recent
concept is that the workload of rendering is shifted to the client computer. This
saves cost for provider of the web application, but leads to a poor user-experience

23

3. IMPLEMENTATION

24

for clients with low processing power since the loading times are slow. This prob-
lem has lower significance from year to year though, because of progressively faster
client computers. The other major problem with Client-Side Rendering still re-
mains. Since the content is not exactly rendered until the page is updated using
JavaScript, SEO (Search Engine Optimization) for the website will suffer as there
will hardly be any data for search engines to crawl [13].

Server-Side Rendering (SSR), on the other hand, is the conventional way of getting
HTML pages rendered on browser. In older server-side rendered application, the
web applicationis build using a server-side language such as PHP, Ruby, or Python.
When a web page is requested by a browser, the remote server adds the (dynamic)
content and delivers a populated HTML page. Server-side rendered websites can
be dynamic pages or static pages, which we have discussed in the previous chap-
ter. The difference between them is that dynamic pages render the website based
on the users behavior and request, whereas static pages render all the content
on the server to static HTML and then serve those static files based on what is re-
quested by the user [4].

Justasthere aredownsides to Client-Side Rendering, Server-Side Rendering makes
the browser send server requests too frequently and performs repetitions of full
page reloads for similar data. Since the data transferred from server to client is
marginally larger compared to Client-Side Rendering, where data is composed of
small data files such as JSON, this can lead to poor loading times, especially in
regions with slow internet speed, or larger network usage.

A solution to the downsides of both Client-Side Rendering and Server-Side Ren-
dering is to combine the strength of both SPA and SSR while eliminating the major
drawbacks of each. Theresulting applications are called Universal Applications. In
summary, a Universal Application is used to describe the JavaScript code that can
execute on the client and the server side. JavaScript frameworks that implement
this solution focus on rendering the initial web page with an SSR solution and then
use a framework to handle the further dynamic routing and fetch only necessary
data.

Nuxt.js [14]

The framework used in this project is called Nuxt.js. Nuxt.js is a higher-level frame-
work for developing universal Vue.js applications. It helps to abstract the diffi-
culties (server configurations and client code distribution) that arise in setting up
Server-Side Rendered Vue.js applications. Further, Nuxt.js also ships with lots of
features that aid development between client side and server side such as async
data, middleware, layouts, etc.

Nuxt.js is a quite sophisticated framework. It does not allow a lot of freedom. The
folder structure in Nuxt.js is clearly defined. It is possible to change it to a certain
extend on the Nuxt.js configurations file but we chose not to do so. The reason for

3.1. Front-End

this is again the maintenance requirement. Following a clear structure makes it
easier for other people to get into it, and also find the desired part more easily.

All the files in this folder structure is called the source of the project. Nuxt.js then
takes the content from the source and packages the code. During packaging Nuxt.js
does a few things. First it sets a context, that is, an object containing all the infor-
mation needed to operate the application. After that Nuxt.js creates the Root Vue
instance. AVueinstanceis aview model as defined in a the model-view-viewmodel
(MVVM) architectural pattern. The Root Vue instance then handles all the other Vue
instances, e.g. from the components [15]. With this Nuxt.js then creates a server
and client. The server creates a new application instance for each request and ex-
ports functions to be called by the ‘bundle-renderer’. The client on the other hand,
updates the context, creates new Vue instances, and mounts the Vue application
to the DOM element.

“The Document Object Model (DOM) is a programming interface for HTML and XML
documents. It represents the page so that programs can change the document
structure, style, and content. The DOM represents the document as nodes and
objects. That way, programming languages can connect to the page.” [16]

Webpack then bundles the Nuxt.js code and delivers the final application. The final
application has to bundles the server bundle running on a Node server. The server
bundleis used by the bundle renderer to render the HTML server to the client. The
otherbundleistheclient bundle, which is used by the browser to hydrate the HTML
served by the server. Hydration is the client-side process that turns the static HTML
into a dynamic DOM, or in other words turn the static HTML into a dynamic, usable
web application [17].

The universal application structure and flow of Nuxt.js can be seen in Figure 3.1.

3.1.2 Set-up

We followed strongly the structure of Nuxt.js. So our extensions to the provided
folder structure of Nuxt.js also followed the same naming and structuring as Nuxt.js
does.

We also wanted to guarantee consistent code. For this we used the Prettier plugin.

“Prettier is an opinionated code formatter. It enforces a consistent style by parsing
your code and re-printing it with its own rules that take the maximum line length
into account, wrapping code when necessary.” [19]

For the TigerJython Community front-end we always tried to avoid long files. This
is why we made frequent use of components. We tried to split the project into
many small pieces, to avoid duplication of code. This also had the benefit that the
project got really modular, so one can easily change small parts without breaking
everything.

25

3. IMPLEMENTATION

26

Companents

Router

assets

Figure 3.1: The universal application structure and flow of Nuxt.js (Diagram derived from Krutie Pa-
tel’s diagram [18])

Folder Structure

In addition to the already provided folder structure of Nuxt.js, we added the con-
tent, helpers, test, and translations folders. The content and translations folders
are similar to the assets folder but contain more specific material. In the content
folder are the Markdown files for the static content of the platform and in the trans-
lations folder are dictionaries in JSON format used by the i18n plugin, to enable
multi-language support of TigerJython Community. The other assets such as the
styling, written in the CSS extension language SASS, and the TigerJython renderer
scripts, are still in the assets folder.

The helpers folder contain frequently used JavaScript functions, so it is similar to
a project library.

The test folder contains unit tests of the platform, written in the Jest framework.
But we had to stop providing unit test, due to time constrains.

Plugins

Plugins contain code that Nuxt runs on top of the entire application. For the Tiger-

Jython Community platform we made use of translation and parser plugins.

i18n stands for internationalization. In this project we made use of the Vue spe-
cific vue-i18n plugin. This plugin enables us to write dictionaries in JSON format

3.1. Front-End

that are used dynamically based on which language the user has selected. We de-
fined all shorter content, such as button values or input labels, in a translation
dictionary and then load dynamically the requested language. For larger content,
such as static text or blog posts, we used markdown files.

Frontmatter Markdown Loader isawebpackloaderforfront matter, inthiscase
markdown. This enabled use to written larger content of the website in conve-
nient markdown files, in a structured and easy maintainable way. The Frontmatter
Markdown Loader can be used to directly compile the markdown file to a Vue com-
ponent, which then can be used on page components. To enable multi-language
support with the static content we started the content-tree of each language un-
der a language specific folder, i.e. the English content is under the folder named
‘en’ whereas the German content is under the folder named ‘de’. This way we can
retrieve the current locale from the i18n plugin and dynamically import the correct
content.

SASS Loader is a webpack loader which enables use to directly import the pre-
compiled SASS files instead of CSS. SASS enables us, in addition to many other fea-
tures, to work more modular. That is, we can build a more structured style source
and directly import it to Nuxt.js instead of first compile it manually and import it.

Modules

Modules are very similar to plugins, but instead of running on top of the entire
application, they run directly as part of the application.

Axios isapromised based HTTP client for the browser and Node.js. It allows use
to easily send asynchronous HTTP requests to REST endpoints. We use Axios in
TigerJython Community enable the communication between our universal appli-
cation and the web API.

Auth s the authentication module provided by Nuxt. We built our login and reg-
istration system based on the Auth module. Authentication is one of the most vul-
nerable parts of a system, so using an already tested and used module for this
made sense.

Dotenv isasmall module which enables usto call variables defined in a environ-
ment file (.env). This file is ignored from Git and contains sensitive data, such as
the secrete key, of the application. This way we can make sure no sensitive data is
accidentally publish but at the same time enables to share the nuxt config file with
all the settings of the application.

27

3. IMPLEMENTATION

28

Style-resources isamodule which integrates the style loaders, such as the SASS
loader, into the application. This way we can directly write styles in the compo-
nents with SASS instead of CSS.

3.1.3 Features

The TigerJython Community platform built during this thesis supports the basics:
Auser can register, upload modules, share the modules, share ideas, like and com-
ment on posts, and get information about TigerJython on the about page. Even
though we made a lot of thoughts about the design of the platform, we layed the
focus on logic and functionality during the implementation process. This means,
the front-end of the platform looks very different to what is described in the design
part (Chapter 2). The TigerJython Community platform that we built can be seen
as an MVP, a minimum viable product.

Authentication

As already mentioned, for the authentication process we made use of the Nuxt.js
Auth module [20]. The Auth module supports two types of authorization strategies.
With the local strategy you can provide a login, logout, and a user endpoint. The
module can then be configured to use a cookie or token based flow. The token
used in the token based flow is a standard SessionID. The other strategy is OAuth2.
OAuth2 is a industry-standard protocol for authorization. This standard is used by
most authentication providers, such as Google or Facebook.

In TigerJython Community we chose not to use a SessionID but rather the more
modern JSON Web Token (JWT). There were two reasons for this choice. The first
reason was that JWTs are self-contained. You can get user information by reading
the payload of the token. And the other reason is that we can more easily provide
an authentication service for the other TigerJython products in the future [21]. Also
JWTs are better scalable, since there is no need to store them in the server’s mem-
ory, compared to SessionlID.

To make the Nuxt.js Auth module work with JWTs, we had to redefine a view parts
of the module. JWTs work with a short-time valid access-token and long-time valid
refresh-token. The access-token is sent as payload with each API request and is
used to authenticate the user on restricted resources. The refresh-token is used to
refresh the access-token. This process had to be custom built for the module since
it is not enabled for local strategies'. We also had to disable the logout endpoint
call. Since JWTs are not session based, we only have to delete the tokens to logout
the user.

The Auth module provides a middleware that is a piece of software, which runs
before the actual content of the page is loaded. The middleware can be called on

'A strategy is where you put the logic for authentication. A local strategy is a strategy running
locally.

3.1. Front-End

each page and checks if the user is authorized to access this page before the page
is even rendered.

Registration

Theregistration process is tightly bound with the authentication. What we did here
is simply create a new user by calling the the register APl endpoint and if we get a
successful response we call the Auth module to start a login process with the given
username and password.

Multi-language Support

We could use the vue-i18n plugin more or less out of the box. Next to the plugin we
also use the i18n Nuxt module. This module helps Nuxt.js create language based
static files, otherwise the language switching would be on the client-side and all
benefits of a universal application would be lost.

We configured the i18n plugin in such a way that we could use it more modular. So
instead of defining the dictionaries directly in the plugin we defined them in the
translation folder and then import the needed dictionary.

TigerJython Modules

Sharing TigerJython modules is one of the core features of TigerJython Commu-
nity. Later on it is planned that TigerJython Community shares the data storage
with WebTigerJython, thus, all saved modules from WebTigerJython are directly
available in TigerJython Community.

For now, we only implemented the feature to upload the module and add a title
and description, as well as, specify whether it should be public or private. The
uploading will be available for the future as well, since there are users who use the
native TigerJython client on the system but might also want to share their projects.

For modules the title is required because the title will be used in the back-end to
rename the file, see Section (Section 3.2) for further details. The description is
thought as a place to describe what the module does. It has a similar purpose as
the readme used in a Git repositories. So the description is of very technical nature.
It describes what the module does, what functions it has implemented, etc.

Module Posting

When creating a post, all the modules of the current user are directly loaded in a
select box and the user can select which module she/he wants to share. The user
then can add atitle and description. The title and description here are not thought
to be the same asinamodule. In the module the description is of technical nature,
whereas in the post the user can more go into what inspired her/him to create it,
what the thoughts were during the creation, etc.

29

3. IMPLEMENTATION

30

Basically, you call the correct APl endpoint to either get a list of posts, get a single
post, create a new post, update a post, or delete a post. Most of the logic of the
posting process is in the back-end, which we discuss in Section 3.2.

Ideas

Idea posts have two purposes. Oneis sharingideas, to inspire others, and the other
isasking questions, or start discussions. So the idea section can be seen as aforum.

Technology-wise, it is more or less the same as module-posting, but without the
module part. Another difference to module posts is also that the description is
required for idea posts.

Like and Comment

We implemented a really simple comment system. There is no option for replies
nor likes. The comments themselves are loaded and created similarly to the posts.
The difference is only that it happens on the same page. We did not implement a
live reload, since this can get really hard to implement but instead added a content
reload button, which fetches the comments from the APl endpoint and updates the
list with a reload of the comment section.

The liking system takes the value provided by the API, increase it by one when a
user clicks it, and updates the value via a request to the API. It does not save the
user who liked the post. So it is possible to leave as many likes as the user wants.
The reason for this is not that we wanted such a liking system but because of time
constraints we could not implement a more sophisticated one.

Both liking and commentingis only available for logged in users, but users without
an account can still view the likes and comments.

Static Content

All the static content of TigerJython Community is either in form of i18n dictionar-
ies or markdown files. With help of the Frontmatter Markdown Loader the mark-
down files are directly load as Vue components into the page [22].

We followed a specific folder structure that allowed us to dynamically import the
markdown files with the correct language. We did this by starting each ‘content
tree’ with the name of the locale?. For English that is ‘en’ and for German ‘de’. This
way we can read the current locale of the user and load the correct content tree.

Instead of having the whole page described by one single markdown file, we split
them into sections. This allows us to have greater flexibility in the design of the
website.

Alocaleis a language-region code such as ‘de_CH’ or ‘en_US’. It can also refer to just a language
code.

3.2. Back-End

3.2 Back-End

As discussed in Section 2.1, our back-end’s communication pointis a REST API. We
decided early on that we wanted to use an existing framework instead of building
the whole back-end from ground up. Even though, a custom back-end would al-
low us to have more flexibility, security-wise it would have a lot more flaws than a
(mostly) thoroughly tested framework.

The first thing we had to be clear about was the language we want to use. Here,
mainly the support and maintenance requirements came into play. A language
such as Go for the back-end would have made sense performance-wise but there
are not many frameworks around, since it is quite new, and to run it on a server is
not so simple because it is not an interpreted language but must be run as binary.
So we wanted a language that is generally known, widely used, and can be run
natively on most servers without a lot of configurations. Our choice fell on Python.
Python provides two big frameworks for web severs. One is Flask and the other is
Django.

Flask isalightweightweb server gateway interface (WSGI) web application frame-
work [23]. It is a lot smaller than compared to Django, and allows more flexibility,
but also is less widely spread and, thus, has fewer plugins and material compared
to the much larger Django framework.

Django is another free and open source Python web framework, but compared
to Flask it is much more high-level and feature-rich [24]. It provides a large user
base and, thus, also many plugins and a lot of helpful material. The trade-off is
that we have less flexibility since we work in a highly structured and predefined
framework.

Even tough we started first with Flask, we soon realized that we are just reinventing
the wheel since Django already provided almost all the features that we tried to im-
plement in Flask. So we switched to Django. After the switch, the implementation
of the back-end progressed much faster.

3.2.1 Procedure

For the back-end we chose a Documentation-Driven Development (DDD). The phi-
losophy behind this is simple:

“from the perspective of a user, if a feature is not documented, then it doesn’t exist,
and if a feature is documented incorrectly, then it’s broken.” [25]

So before we even wrote a line of code, we wrote the APl documentation. In the
end we had to change a lot in it and the APl documentation at the end of project
was very different to what we had started with. But still, we followed through with
this approach. As soon as we realized that the APl endpoint and the logic behind

31

3. IMPLEMENTATION

32

it does not hold up to what we needed, we changed the documentation, thought
everything through, and then implemented the changes.

3.2.2 Structuring

Django is built to be used as a server-side dynamic application, but thanks to the
help of a toolkit built on top of Django, it can be repurposed as a back-end serving
a web API. The toolkit we used is called Django REST Framework.

Additionally to the Django REST Framework, we also used Simple JWT, which is a
plugin for the Django REST Framework that enables JSON Web Token authentica-
tion.

The back-end has two main folders. The application folder, in TigerJython Commu-
nity it is called ‘api’, contains the set-up of Django itself. In this folder we defined
the default route of the API as well as the paths to the Simple JWT plugin, for the
creation and refresh process of the JSON Web Tokens. The API path is versioned,
so that the API can be updated without interrupting applications that rely on an
older version of the API.

The other folder is called ‘core’. This folder contains the main logic of the API. The
core is composed of 3 layers (shown in Figure 3.2): the serializer, the view, and the
router. We have already seen this structure in Section 2.1.

Router

View

Serializer

Django Models

Figure 3.2: Basic Architecture of Django REST Framework

AW~

3.2. Back-End

UuID

A universally unique identifier (UUID) [26] is a system wide unique 128-bit number.
It is used to uniquely identify information. There are five versions of UUIDs. In
our case it made sense to use version-4 because the UUIDs are generated using a
random number. We won’t go deeper into this topic.

We used UUIDs for most of our data for two reasons. First, we wanted to have a
unique name for every dataentryin ourtable, to call and identify it without naming
collisions. Second, we wanted to have a system which does not expose the primary
key of our data in the API calls.

The only data entries which don’t use UUIDs are tables which have a one-to-one
relation with another table and the user data, since it can be uniquely identified by
the username.

Model

The model lays underneath the three layers of the API. Instead of directly connect-
ing the serializer with the database, the Django REST Framework uses the Django

model as an abstraction of the database itself. With this, Django gives an automatically-

generated database-access API. Since Django supports a large amount of different
database technologies, this also allows us to easily switch to different databases
later on [24].

The model classes defined in the Django model contain simply a list of variables
which represent the records in the table. That is, each model class is a table and
the variables in the class are its fields. An example can be seen in Listing 3.1. In
the example the post comment has a UUID that is used to identify the comment
uniquely without exposing its primary key, a reference to the post and owner it
belongs to, the comment content, and an automatically generated creation and
update time.

class PostComment (models.Model):

uuid = models.UUIDField(
unique=True,
default=uuid.uuid4 () .hex,
editable=False

)

post = models.ForeignKey(Post,
related_name= s
on_delete=models.CASCADE, default=1

)

owner = models.ForeignKey(User,
related_name= s
on_delete=models.CASCADE,
default=1

33

3. IMPLEMENTATION

34

A W N

(o))

)
content = models.TextField()
creation_time = models.DateTimeField(auto_now_add=True)
update_time = models.DateTimeField(auto_now=True)
Listing 3.1: The post comment model class

In the case of TigerJython Community the model also contains the logic which is
relevant imminent to the saving process, e.g. renaming of uploaded files. Tiger-
Jython Community has two types of files which can be uploaded by the user. One
is the user avatar and the others are the modules. Both of which are also stored in
a user specific folder.

To avoid naming collisions with the files, we used UUIDs. The user avatar is directly
renamed with a UUID (shown in Listing 3.2).

def avatar_directory_handler(instance, filename):
ext = filename.split('.')[-1]
filename = % (uuid.uuid4(), ext)
return .format (
instance.owner.username,
filename

Listing 3.2: Avatar renaming and directory handler

For the modules it was a bit more complex. Modules can first of all be private and
public. So we had to guarantee that private modules can only be accessed by the
owner. Further, modules are meant to be shareable later on. So we had to give
them a name which is humanly understandable but still unique. We solved this
by giving them two names separated by a dot. The first part is the module name
given by the user, which does not have to be unique, and the second part is the
UUID of the module database entry itself. With this the file can always be assigned
to an entry and vice versa. This way the file has a name that can be understood
by a user but also the file can be shared and copied around in the system while
avoiding naming collisions.

Now back to the private modules. We came to quite a big problem here. Django
does not support any mechanism to implement an authentication process on di-
rectfile access. Asolution would have been to save thefile directly into the database
by converting them to blobs (binary large objects). But this has some major draw-
backs, one of the most relevant is database size. Storing the files directly in the
database increases the size of the database significantly up to the point where a
backup of the database can take hours. Another major drawback is the reading
speed. Databases are fast on small data sizes, but become progressively slower
compared to file system when the data size increases, this is due to memory con-
straints of the system [27]. Since we could not build an authentication system

3.2. Back-End

for direct access in time, we chose a temporary solution by “hiding” each private
file behind a unique and randomly named folder. The folder name is created by
16 characters long secret token followed by a 36 characters long UUID to make it
unique. This way, the folder name can only be found via means of a brute force
attack. The whole function is shown in Listing 3.3.

def module_directory_handler(instance, filename):
ext = filename.split('."')[-1]
module_name = instance.name.rstrip()

filename = % (module_name, instance.uuid, ext)
if not instance.public:
return .format (
instance.owner.username,
secrets.token_urlsafe(16),
uuid.uuid4 (),
filename
)
else:
return .format (
instance.owner.username,
filename
)
Listing 3.3: Module renaming and directory handler
Serializer

The serializer converts the information stored in the database and defined by the
Django models into a format which can be more easily transmitted via the API.

In TigerJython Community we used two types of serializer classes, the model se-
rializer and the hyperlinked model serializer. The model serializer class provides
a shortcut that allows us to automatically create a serializer class with fields that
correspond to the model fields. The hyperlinked model serializer class is similar
in that matter except that it uses hyperlinks to represent relationships instead of
primary keys. Even though, those classes have the option to directly include all
fields of the model, we chose to explicitly name all fields. This allowed us to have
more control over what is included in the serializer and what is not.

Since we used nested models, that is, models which reference to other models, we
either had to set the referenced fields to read-only or manually handle those cases
with a creation method.

In the serializer, we also handled the way the referenced fields are represented.
The owner of a record, for examples, is only exposed with the username, or a mod-
ule with its UUID. A good example of a nested model where the referenced fields
are serialized with their unique identifier is the post serializer shown in Listing 3.4.

35

3. IMPLEMENTATION

36

class PostSerializer(serializers.ModelSerializer):
uuid = serializers.UUIDField(format=)
owner = serializers.ReadOnlyField(source=

module = serializers.ReadOnlyField(source=

class Meta:
model = Post
fields = (, , ,) >

,) ,)

related_fields = ()

def create(self, validated_data):
post = Post.objects.create(**validated_data)
PostStat.objects.create(post=post)
return post
Listing 3.4: Post serializer with two read-only fields and a creation method

View

The view defines the actual logic, which is available via the API. So the views are
the request handlers. They define functions behind each request type, set the per-
missions, and the way the data can be requested, e.g. via the ID or via other means.

In the view of TigerJython Community, we used two types of classes, the APIView
and the Viewset. The APIView is a direct subclass of Django’s View class, with some
differences. The main differences is that instead of handling HTTP requests and
returning HTTP responses, it handles REST framework’s requests and returns REST
framework’s responses. The other class, the Viewset, is a combination of logicin a
set of related views. Instead of defining a GET or POST request directly in a view-
set, it provides actions such as list, retrieve or create. For example, the list action is
basically a get request for all the elements in the respective model and the retrieve
action is a get request for a specific entry in the model [28].

The Django REST Framework also provides a ModelViewSet class, which automat-
ically generates a view-set based on the serializer. At the beginning, we used this
class for most API endpoints, but soon realized that we require a much more logic
in the views to guarantee a secure API. So we replaced most of the ModelViewSet
classes with custom built viewsets or views.

Here we also defined who can access which APl endpoint and how they can access
the APl endpoint. This is done by defining permission classes and a lookup field,
as shown in Listing 3.5 with the module view-set.

class ModuleViewSet(viewsets.ViewSet):

o A W N

3.2. Back-End

permission_classes = [
permissions.IsAuthenticatedOrReadOnly,
IsOwnerOrReadOnly

]

lookup_field =

serializer_class = ModuleSerializer

Listing 3.5: Class settings of the module viewset

In many views we had to restrict access based on whether the request giver is the
owner or not. Since the Django REST Framework did not provide such classes, we
had to define two custom classes. The IsOwnerOrReadOnly class restricts access
on modifying or deleting the entries and the IsOwner class restricts any access to
the APl endpoint.

For TigerJython Community, we used hard deletes. This means that the record is
completely removed from the table. The other option is soft deletes, that is, the
record is flagged as deleted instead of actually being deleted. This way the entires
can be recovered if it was accidentally deleted. In the future, it probably makes
more sense to switch to soft deletes with a timeout. That is, the record is only com-
pletely deleted after after a certain time. This way the user still has time to reverse
a delete for some time.

Router

The router wires up the APl URLs. They connect the APl endpoints with the logic
behind it.

The Django REST Framework allows us to simply register the view-sets on a default
router and the framework then handles the routing by itself. But we also defined
views, which had to be routed manually by defining a path. Listing 3.6 shows the
registration of the user view-set and the profile view.

router = DefaultRouter()
router.register (, UserViewSet)

urlpatterns = router.urls
urlpatterns += [

path(,
UserSensitiveView.as_view(),
name=

),

Listing 3.6: Routing of user and profile APl endpoints

37

3. IMPLEMENTATION

38

3.2.3 Features of the API

The TigerJython Community API has quite a few endpoints. In this section we are
going to discuss briefly all the different APl endpoints and their logic. Contentwise,
we have split the endpoints into four categories. Authorization contains all the
endpoints for the JSON Web Token handling, User contains the endpoints for user
management, Modules is all about modules creation, updates, etc., and Commu-
nity contains all the endpoints which enable the community part of the platform.

In this section we only focus on GET, POST, PUT, PATCH, and DELETE HTTP request
methods. In the internet community there is quite a disagreement about when
to use POST, PUT, or PATCH, but since we have REST APl we used the RESTful ap-
proach. That is, GET is used to read or retrieve data, POST to create, PUT to up-
date/replace, PATCH to partial update/modify, and DELETE to destroy data [29]. In
our views the PATCH and PUT requested methods run exactly the same logic, but
for consistency we only used PUT requests in the front-end.

Authorization

[login only supports POST requests. The request body contains a username and
password, and if the username and password matches with the server, it creates
and then returns a refresh and access token in the JSON Web Token format.

[refresh_token is the endpoint which refreshes the access token via a POST re-
quest. The request body has to contain a valid refresh token. The system checks
the refresh token if it is still valid, compares the token payload with the requesting
user, and if both successful, it returns a new access and refresh token pair.

User

[register is the endpoint which is used to create a new user via a POST request.
To create a new user the username, password, email address, and first and last
name have to be provided.

[profile can only be accessed by an authorized user. The GET request can re-
trieve the data of the current user. The PUT and PATCH request can update the
emailaddress, firstand lastname, and the description. The DELETE request deletes
the user from the system.

[profile/upload_avatar can only be accessed by an authorized user and via a
PUT request the user avatar is updated. Even though this endpoint creates a file
on the server, we used a PUT request because we focused on the data changes in
the database. This request does not create any records in the database but rather
updates the user profile with the new URL.

3.2. Back-End

[profile/set_password is an open endpoint to change the user password with a
PUT request. The user is identified via a unique reset token. In case the reset token
is no longer valid the password cannot be changed.

[profile/forgot_password is an open endpoint to request a reset token. The
POST request contains the username. The system then retrieves the email address
of the user, creates a unique reset token that is valid for 24 hours, and sends the
reset URL to the user.

/profile/update_password canonlybeaccessed by anauthorized user. The PUT
request has to contain the current password and the new password. The password
can only be changed if the current password is valid.

Jusers is aread-only endpoint that returns a list of all usernames.

Jusers/{username} is a read-only endpoint that returns the public data of the
requested user.

Jusers/{username}/ideas is a read-only endpoint that returns a list of all idea
posts of the requested user.

Jusers/{username}/modules isaread-onlyendpointthatreturnsalistofallmod-
ules of the requested user.

Jusers/{username}/posts is a read-only endpoint that returns a list of all posts
of the requested user.

Modules

/modules returns a list of all public modules for an unauthenticated users. Au-
thenticated users also get their own private modules returned with a GET request.
Calling this endpoint with a POST request, authenticated users can create a new
module. The system checks whether the included file is a Python file and if the title
does not contain any forbidden characters, if this is successful, the information is
passed on to the next layer.

/modules/{uuid} supports retrieve, update, and delete requests on the given
module. A GET request on public modules is open, but for private modules the
user has to be the owner. Updating and deleting modules is only possible for own-
ers of the module.

39

3. IMPLEMENTATION

40

Community

Here we are only going to look at the post’s endpoints. There is are also the idea’s
endpoints, but they are more or less equivalent to posts with the exception that
they don’t link to a module and that description is required.

[posts returns a list of all public posts for unauthenticated users. Authenticated
users also get their own private posts returned with a GET request. Calling this
endpoint with a POST request, authenticated users can create a new post. The
system then checks whether the posts contains a UUID of an existing module, and
if successful the information is passed on to the next layer.

[posts/{uuid} supports retrieve, update, and delete requests on the given post.
A GET request on public posts is open, but for private posts the user has to be the
owner. Updating and deleting posts is only possible for owners of the given post.

[posts/{uuid}/comments returns a list of all comments of the given post.

[post_comments only supports POST requests from authenticated users. Call-
ing this endpoint creates a new comment under the given post.

[post_comments/{uuid} isonly callable if the call comes from the owner of the
comment. This endpoint supports retrieve, update, and delete requests.

[postStats is atemporary, open endpoint and returns a list for likes and views of
all posts.

[postStats/id is a temporary, open endpoint. It supports retrieve and update
requests for likes and views of the given post, identified by its ID.

Chapter 4

Findings

In this chapter, we are going to talk about all the bits and pieces that we realized
during the project. This can be vulnerabilities that we found but could not solve
or legal requirements, since the platform comes into contact with sensitive data of
minors.

4.1 Vulnerabilities

TigerJython Community is in a very early state of development, so it is not surpris-
ing that there are quite a few vulnerabilities around. During development and later
during analyzing the project we found one major flaw in the system. We already
stumbled across cross-site scripting as we started to implement modules.

4.1.1 Cross-Site Scripting (XSS)

Cross-site scripting, or also called XSS, is a class of web-application vulnerabili-
ties. Attackers can gain control over login cookies, passwords, and authentication
tokens by compromising client-side browser security using XSS. To prevent XSS it
requires to sanitize all untrusted inputs to the web-application and all inputs that
could be received by the client’s JavaScript interpreter [30]. Figure 4.1 shows a
rough example of an XSS attack.

TigerJython Community is vulnerable it three ways from XSS. One way is that the
framework and its dependencies are vulnerable, another is our own code, and last
but not least is code injection via the TigerJython modules.

The framework we used, Nuxt.js, was tested with Synk'. Synk provides a database
to track vulnerabilities in open source packages and helps find and fix vulnerabil-
ities [32]. In the newest version of Nuxt.js the Synk test did not find any known
vulnerabilities, but still this does not necessarily mean that there are none.

Thttps://snyk.io/test/github/nuxt/nuxt.js/ (as of 28.03.2020)

4

4. FINDINGS

42

</>

O Injects malicious script
l {\—3

Attacker
Malicious script is
saved to database

< -—
b:
User requests data <> Database
from the server
Server
vietm Data containing the
malicious script is
< / > loaded

Malicious script might
be executed and call
back to the attacker

Figure 4.1: An XSS attack in which the malicious code persists into the web app’s database (Example
from Guy Podjarny [31])

TigerJython modules are written in Python. To run Python in the browser we used
Skulpt 2. In the module code it is possible to write Python code in such a way that
itis interpreted to have malicious behavior.

Modules are publicly shared and run natively in the browser. Thus, it is easily pos-
sible to load scripts from external sources, or directly write the necessary code in
the module itself, and run them on the browser. Those scripts could for example,
fetch passwords or make API requests with the tokens. With WebTigerJython this
was not such a big problem so far since the code run in the web-application was
written by the user, but with TigerJython Community anyone can share a module.

A solution to prevent attacks with modules is called sandboxing. That is the inter-
preted code is not run on the machine, or in this case the browser, directly, but
ratherin a closed virtual environment. This way, the malicious code does not have
any access to the browser data and cannot make any outside requests.

Next to modules the web-application in general is still not safe. As a precautionary
method from XSS, there are a few steps available. They still do not guarantee to
fully protect the web-application from attacks, though, but increase the difficulty
significantly.

One such approach to mitigate cross-site scripting attacks is HttpOnly cookies.

2https://skulpt.org/

4.2. Data Privacy

This type of cookies are inaccessible to JavaScript’s Document . cookie APland can
only be sent to the server via HTTP request [33].

4.2 DataPrivacy

Data privacy is a huge topic. Especially in recent years with the implementation of
the General Data Protection Regulation of the European Union in 2018 it got even
more important to care about data privacy. TigerJython Community has a lot of
user data and especially notable is that a majority of the users are not of legal age.

4.2.1 User protection

Privacy and user protection was one of our most important requirement from the
beginning. We want the users to have full control over what information is gath-
ered and that it can be set to private or even be deleted at any time. The goal of
the platform has never been to collect data, but to support students and motivate
them to invest more time into programming.

TigerJython is used not only in Switzerland but also in other countries. Most of the
foreign countries are members of the EU, hence, the platform has to comply the
General Data Protection Regulation (GDPR). GDPR does not only regulate which
data can be collected, but also how to collect data, for example, that the stored
data has been encrypted, or where to store the data, that is, storing data of EU
citizens outside of the European Economic Area underlies even further restrictions
[34].

Additionally to GDPR, states can have their own implementation of a data protec-
tion regulation. Especially important for TigerJython Community is the age of con-
sent. TigerJython Community is mainly an educational product for children of age
12 to 18. Most countries have meanwhile adopted an age of consent for data pro-
cessing and in most countries this is between children of age 13 to 16 [35]. Children
below the age of consent are legally not allowed to accept the terms of use and
privacy policy of a platform that collects user data. The terms of use and privacy
policy has to be accepted by their legal guardian or legal parent.

4.2.2 Multi Module Dependencies

WebTigerJython allows the user to write modular code, thus, using libraries, hav-
ing split the code in several modules, or load classes and functions from previously
created modules.

This modularity of the code makes it a huge challenge to share the code. Since the
code should be executable on TigerJython Community, it has to load all module
dependencies. But now imagine following scenario. A student wants to share a
program she/he has been working on for hours, but relied on a private library pro-

43

4. FINDINGS

44

vided by her/his school. This code can obviously not be shared since the library is
marked as private.

An easy solution to this would be that on the sharing process, not the file that the
student created is shared but a pre-processed file. You can see it kind of like a com-
piler. The pre-processor looks up all the imports and replaces them with the actual
definition of the imported functions or classes. But this raises another, even bigger
problem. The imported function and/or classes are from a library which is marked
as private. Thus, the owner has explicitly stated that the library and all functions
and classesinitare to be held privately. Thus, justinjecting the imported functions
and/or classes into the file will solve the problem that the file is now shareable, but
it won’t solve the privacy breach done with that.

So the challenge now is to make the students understand the importance of only
sharing code which is written by themselves to 100% or only use publicly marked
modules. Since the students could just copy and past the private code into their
module when an error message pops up that states that the module could not be
shared because of private imports.

4.3 Misuse Prevention

TigerJython Community is an open platform where everyone can register and share
modules, comment on posts, and follow discussions. So TigerJython Community
is nothing else than a social media platform. As with any other social media plat-
form, there are black sheep, which misuse the platform. With misuse we don’t
mean hacking or attacking the platform, but rather spamming, posting inappro-
priate content, bullying, etc.

Most larger social media platforms have a few means to protect their community
against this. Nowadays, most such platforms rely on a mix of machine learning al-
gorithms, reviewers, and reports from the community themselves. Machine learn-
ing, which is the main protector of those platforms, is not feasible for TigerJython
Community, so we have to mainly rely on reviewers and reports from the commu-
nity.

Reviewers have the option the set posts to private, or delete them, delete com-
ments, and ban users. The platform rules are defined in the community guidelines
and every user can access them anytime. The users will also be informed as soon
the as the community guidelines change.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The project mainly consisted of going through cycles. Through the whole project
we had to iterate over having the idea, outlining the idea, implementing it, analyz-
ingit, and finding flaws. Sometimes the flaws were so massive that we had to redo
a large part of the existing work. This was not only true for the implementation
part, but also the designs and specifications.

Having these iterations and realizations helped enormously in understanding all
the connections of how all the different parts of such a large project come together.

The final product of the thesis is an MVP prototype. That is, we have the core re-
quirements fulfilled: The TigerJython Community that came out is able to register
new users, has a working login and logout process, the users can share posts, leave
comments and likes, and read more about TigerJython in the information sections.
In order to move from the prototype to the release, further development must take
place.

5.2 Difficulties during Implementation

At first the whole project seemed fairly easy to build a platform like TigerJython,
but soon we had to realize that it was not as simple as we had thought. The main
reason why the implementation was harder than expected was because of the
frameworks, that we were not familiar with, and our personal goals we had set
forit.

We wanted to build a platform that lasted and is compatible with all the other ex-
isting parts of TigerJython. This is why we chose the more complicated modular
design instead of simpler monolithic design. Another part of the project, where
we chose a much more complicated approach instead of something simpler was
the authentication system. We used JSON Web Tokens instead of SessionIDs. That

45

5. CONCLUSION AND FUTURE WORK

they are different in security and performance-wise has already been discussed,
but when comparing JWTs with SessionIDs another difference is also the imple-
mentation. JWTs are much harder to use compared to SessionIDs. Sure, there are
benefits with JWTs but at the end it comes down to our goals that we used them.

Our high goals also led to another result. We had to switch the frameworks for the
back-end and also partly for the front-end. At the beginning, we used Flask. With
theincreasing scope of the project we had to switch to a framework that had more
prebuilt features, so we switched to Django because otherwise the project was no
longer feasible. In the front-end something similar happened. At first we started
to build TigerJython Community with Vue.js. As we realized how large the project
gets we had to switch to something that had less impact on the client computer.
Luckily, we stumbled upon Nuxt.js so we could recycle quite a bit of the existing
code, but still had to rewrite a large quantity.

As we came to the end of the project, we became more and more aware of the
security flaws in our back-end, which resulted in rewriting all most the complete
view layer of the API.

5.3 Future Work

TigerJython Community can be extended in many ways. Some parts are more im-
portant than others. Here are a few extensions listed and each of which can easily
be a Bachelor’s or even Master’s Thesis by itself.

Combinding with WebTigerJython. SofarWebTigerJythonand TigerJython Com-
munity are completely separate projects. They rely on different frameworks and
languages. In the future, students should be able to easily switch between those
two products. So having a share button on WebTigerJython which directly opens a
create-post menu with this module, or open a module of a post in WebTigerJython.

Administrator area. There are three different administrators. The reviewers can
see the reports and read any public content, delete or set this content to private,
and ban users for a time or even forever. The staff can change the content of the
information pages on TigerJython Community and view the statistics. The super-
visor has access to everything. The administrator area is probably one of the most
important extension, since without it TigerJython Community cannot be released.

Classrooms. Classroomscan beseen asasmallerversion of the community area
of TigerJython Community. Here the teacher, who created the classroom, acts
somewhat as the supervisor of this closed system. Additionally to the features of
TigerJython Community there can be an area where the teacher can share exer-
cises and solutions. Instead of creating this as an extension to TigerJython Com-

46

5.3. Future Work

munity, it may be even better to create it as a separate project with a shared code-
base.

Private Chatrooms. This extension is meant to connect the TigerJython Com-
munity. Instead of only follow other people and see their posts and have discus-
sions below the post, with the help of private chatrooms the users can directly chat
with other people over the platform without the need to exchange their phone
number or email address. Of course, this has to be somewhat restricted to prevent
random strangers to leave private messages, so additionally to following people
the user can ask them as a friend, if the opposite user accepts the request they can
start using the private chatroom.

a7

Bibliography

(3]

(4]

(5]

Modul Medien und Informatik. Lehrplan 21. 2019. URL: https : / /v - fe .
lehrplan.ch/index.php?code=b%7C10%7C0&la=yes.

University of Kent Computing Education Research Group. Greenfoot. 2020.
URL: https://www.greenfoot.org/.

MIT Lifelong Kindergarten Group. Scratch.2020. URL: https: //www.scratch.

mit.edu/.

Web pages and web apps, Client-side and server-side scripts. URL: https://
www . bbc . co.uk/bitesize/guides/znkqn39/revision/ 3. (accessed:
18.03.2020).

Maneesh Singh. Difference between Static and Dynamic Web Pages. URL: ht tps

/ / www . geeksforgeeks . org / difference - between - static - and -
dynamic-web-pages/. (accessed: 18.03.2020).

Roman Lipski. Single-page applications vs. multiple-page applications: pros,
cons, pitfalls. URL: https: //ozitag.com/blog/spa-advantages/. (ac-
cessed: 18.03.2020).

GraphQL. URL: https://graphql.org/learn/. (accessed: 16.03.2020).
gRPC. URL: https://grpc.io/docs/guides/. (accessed: 16.03.2020).

Roy Thomas Fielding. “Architectural Styles and the Design of Network-based
Software Architectures”. PhD thesis. University of California, Irvine, 2000.
URL: https://www.ics.uci.edu/ fielding/pubs/dissertation/
rest_arch_style.htm.

U.S. Dept. of Health and Human Services. User Experience Basics. URL: ht tps :
//www .usability.gov/what - and - why/user - experience . html. (ac-
cessed: 30.01.2020).

U.S. Dept. of Health and Human Services. Information Architecture Basics.
URL: https: //www . usability . gov/what - and - why / information -
architecture.html. (accessed: 30.01.2020).

49

https://v-fe.lehrplan.ch/index.php?code=b%7C10%7C0&la=yes
https://v-fe.lehrplan.ch/index.php?code=b%7C10%7C0&la=yes
https://www.greenfoot.org/
https://www.scratch.mit.edu/
https://www.scratch.mit.edu/
https://www.bbc.co.uk/bitesize/guides/znkqn39/revision/3
https://www.bbc.co.uk/bitesize/guides/znkqn39/revision/3
https://www.geeksforgeeks.org/difference-between-static-and-dynamic-web-pages/
https://www.geeksforgeeks.org/difference-between-static-and-dynamic-web-pages/
https://www.geeksforgeeks.org/difference-between-static-and-dynamic-web-pages/
https://ozitag.com/blog/spa-advantages/
https://graphql.org/learn/
https://grpc.io/docs/guides/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.usability.gov/what-and-why/user-experience.html
https://www.usability.gov/what-and-why/user-experience.html
https://www.usability.gov/what-and-why/information-architecture.html
https://www.usability.gov/what-and-why/information-architecture.html

BIBLIOGRAPHY

[12] Oxford University Press (OUP). Lexico.com. 2019. URL: https: //lexico .
com.

[13] unkown. SPA(Single-page application). URL:https://developer .mozilla.
org/en-US/docs/Glossary/SPA. (accessed: 30.03.2020).

[14] Nuxt Guide. URL: https://nuxtjs.org/guide. (accessed: 30.03.2020).

[15] The Vue Instance. URL: https://vuejs.org/v2/guide/instance . html.
(accessed: 30.03.2020).

[16] Introduction to the DOM. URL: https : //developer . mozilla . org/en-
US/docs/Web/API/Document_0Object_Model/Introduction. (accessed:
17.03.2020).

[17] Client Side Hydration. URL: https://ssr.vuejs.org/guide/hydration.
html. (accessed: 30.03.2020).

[18] Krutie Patel. Universal application code structure in Nuxt.js. URL: https://

medium.com/free-code-camp/universal-application-code-structure-
in-nuxt-js-4cd0l4ccObaa. (accessed: 19.03.2020).

[19] Prettier, Opinionated Code Formatter. URL: https://github.com/prettier/
prettier. (accessed: 19.03.2020).

[20] NuxtAuthModule.URL:https://auth.nuxtjs.org/.(accessed:30.03.2020).

[21] JSON Web Token Introduction. URL: https://jwt.io/introduction/. (ac-
cessed: 30.03.2020).

[22] frontmatter-markdown-loader Github repository. URL: https : / / github .
com/hmsk/frontmatter-markdown-loader#readme. (accessed: 02.04.2020).

[23] Flask.uRL:https://palletsprojects.com/p/flask/.(accessed:25.03.2020).
[24] Django. URL: https://www.djangoproject.com/. (accessed: 25.03.2020).

[25] Zach Supalla. Documentation-Driven Development. URL: https : / / gist .
github.com/zsup/9434452. (accessed: 25.03.2020).

[26] AUniversally Unique IDentifier (UUID) URN Namespace.URL: https://tools.
ietf.org/html/rfc4122. (accessed: 31.03.2020).

[27] Russel Sears, Catharine von Ingen, and Jim Gray. To BLOB or Not To BLOB:
Large Object Storage in a Database or a Filesystem? Tech. rep. MSR-TR-2006-
45. Microsoft Research, Apr. 2006. URL: https : //arxiv.org/ftp/cs/
papers/0701/0701168. pdf2.

[28] Django REST Framework. URL: https://wuw.django-rest - framework .
org/api-guide/. (accessed: 27.03.2020).

[29] unkown.RESTAPI Tutorial - HTTP Methods. URL: https://restfulapi.net/
http-methods/. (accessed: 27.03.2020).

[30] William Melicher et al. Riding out DOMsday: Toward Detecting and Preventing
DOM Cross-Site Scripting. Tech. rep. Carnegie Mellon University, 2018. URL:
https://www.cs.cmu.edu/ anupamd/paper/ndss2018. pdf.

50

https://lexico.com
https://lexico.com
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://nuxtjs.org/guide
https://vuejs.org/v2/guide/instance.html
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://ssr.vuejs.org/guide/hydration.html
https://ssr.vuejs.org/guide/hydration.html
https://medium.com/free-code-camp/universal-application-code-structure-in-nuxt-js-4cd014cc0baa
https://medium.com/free-code-camp/universal-application-code-structure-in-nuxt-js-4cd014cc0baa
https://medium.com/free-code-camp/universal-application-code-structure-in-nuxt-js-4cd014cc0baa
https://github.com/prettier/prettier
https://github.com/prettier/prettier
https://auth.nuxtjs.org/
https://jwt.io/introduction/
https://github.com/hmsk/frontmatter-markdown-loader#readme
https://github.com/hmsk/frontmatter-markdown-loader#readme
https://palletsprojects.com/p/flask/
https://www.djangoproject.com/
https://gist.github.com/zsup/9434452
https://gist.github.com/zsup/9434452
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122
https://arxiv.org/ftp/cs/papers/0701/0701168.pdf2
https://arxiv.org/ftp/cs/papers/0701/0701168.pdf2
https://www.django-rest-framework.org/api-guide/
https://www.django-rest-framework.org/api-guide/
https://restfulapi.net/http-methods/
https://restfulapi.net/http-methods/
https://www.cs.cmu.edu/~anupamd/paper/ndss2018.pdf

Bibliography

Guy Podjarny. XSS Attacks: The Next Wave. URL: https://snyk.io/blog/
xss-attacks-the-next-wave/. (accessed: 28.03.2020).

unknown. Synk - Github application. URL: https://github. com/marketplace/
snyk. (accessed: 28.03.2020).

unknown. HttpOnly - OWASP. URL: https://owasp.org/www- community/
HttpOnly. (accessed: 28.03.2020).

European Parliament and of the Council. General Data Protection Regula-
tion. URL: https : //eur - lex . europa . eu/eli/reg/ 2016 /679 /oj.
(accessed: 29.03.2020).

Eva Lievens and Ingrida Milkaite. A children’s rights perspective on privacy
and data protection in the digital age. URL: https : / /www . ugent . be /
re/mpor/law-technology/en/research/childrensrights.htm. (ac-
cessed: 29.03.2020).

51

https://snyk.io/blog/xss-attacks-the-next-wave/
https://snyk.io/blog/xss-attacks-the-next-wave/
https://github.com/marketplace/snyk
https://github.com/marketplace/snyk
https://owasp.org/www-community/HttpOnly
https://owasp.org/www-community/HttpOnly
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.ugent.be/re/mpor/law-technology/en/research/childrensrights.htm
https://www.ugent.be/re/mpor/law-technology/en/research/childrensrights.htm

Appendix

53

TigerJython Community

Requirements Document v1 | 01.04.2020

Requirement Type ID-Prefix | ID-Number Description REQ Reference ID
Feature-Function F 0001 A platform that gathers information about Tigerlython
. F 0002 A user should be able to share ideas and in form of text posts
. F 0003 Ideas and questions can be discussed in the comment section F0002
F 0004 A user can view his saved projects
F 0005 All projects can be executed and the result will be displayed directly.
A user can mark a modules as public or group-public. This will set the project free to the given user-
F 0006 group
F 0007 Public modules can be view and used by all users. FO006
Modules can be posted as module post. A module post can be set to private, to make it invisible to
F 0008 other users.
F 0009 Users can discuss public project posts in the comment section
F 0010 Mechanism for forming user groups (teachers only) U0006
F 0011 Publish module in user group.
F 0012 A user can view and access user group modules F0010
F 0013 A user can post modules and ideas to user group only F0010
F 0014 A user can discuss on module and idea posts in a user group
F 0015 A user can follow other users to get updates when users posts
F 0016 A user can follow groups if the group is public
F 0017 A user can view public profiles of users
Change user preferences. Preferences will be about email notifications, what is public in the profile,
F 0018 (maybe) platform theme etc.
(Things that the F 0019 Edit own modules
system/application must be able F 0020 Edit own module and idea posts
to do in order for the user to F 0021 Edit own
achieve his/her goal) F 0022 Search topic
F 0023 Filter results
F 0024 Register as new user
F 0025 Login as existing user
F 0026 Logout
F 0027 Update profile
F 0028 Set a user avatar
F 0029 Change language, which will be remembered in user profile
F 0030 Notification for activity
F 0031 Change notification preferences
F 0032 A user can like posts and comments
F 0033 about Tigerlython should be easily ac
F 0034 An FAQ and an option of contact should be provided as support for the user
F 0035 A group can set preferences for entire group
F 0036 User to user chat room (when users are friends)
F 0037 Ask others users to be friends. Other user can decline or agree friend request.
F 0038 User can delete friends from friends list
F 000X
u 0001 User login for student and teachers alike, plus third-party (not in school system) user
u 0002 Secure and encrypted database U0001
u 0003 Shared login for all Tigerlython related products U0001
u 0004 Simple API to user database to provide user logins for future Tigerlython projects u0004
u 0005 Mechanism to identify, approve, and flag teachers
u 0006 Username support to posted " "
u 0007 Word checker for username to prevent "bad names" to some extent U007
u 0008 Every action that leads to saving user data or sending an email has to be opt in
Users have the option to report abuse or inappropriate content. After a threshold is reached, the
U 0009 owner of the reported content will be banned until an admin sets him to innocent
u 0010 All reports should contain a link to the reported content, a description, and a date U0010
A user can decided for who a post or module is accessible (public, group-public, or private). Default is
u 0011 private.
u 0012 A user can decide if the user avatar is public or group-public. Default is public.
B u 0013 A user can decide if the real name is public, group-public, private. Default is private.
User Access / Security U 0014 iRejecting terms and condition leads to cancelation of registration.
Requirements / Privacy An administration area should be provided where only supervisors have access. Post, modules, and
comments can be deleted or marked as inappropriate. Reports can be handled. User bans can be set
u 0015 or lifted.
A system administrator can flag or delete all public posts or modules. By marking content as
u 0016 inappropriate, it will set to private and the owner will be notified.
u 0017 A group /owner can flag or delete all group-public posts or modules.
Report handling should provided option the take action, which either deletes the offending content or
u 0018 dismisses the report; view content, which opens up the content; or dismiss directly
u 0019 Well documented design system / visual identity
u 0020 C ideli
u 0021 Terms of use
u 0022 Privacy Policy (gdpr compliant)
U 0023 Check which data is passed on externally by OAuth 2.0 to third parties.
u 0024 The i tool only show the at most necessary i i
U 000X
| 0001 Modern and student-friendly Ul
| 0002 UX studies based layout
] 0003 Easily r design system / visual identity for Tigerlython
} 0004 Store user input in post creation in local storage 10002
! 0005 The system should provide users with the information about success/failure of each operation
If an error occurs in a form field, the field should be filled with the entered data, be marked as
| 0006 erroneous, and have the corr error message next to it.
| 0007 All required field in forms should be marked as such
Interfaces / Ul / UX Every action of the user that leads to deletion of an item or record should lead to displaying a
! 0008 pop up. Once the user confirms the deletion, it will be
Every critical change (e.g. change email address) should lead to displaying a confirmation pop up.
| 0009 Once the user confirms the change, it will be
Each form of adding/editing items in the system should contain "save" and "cancel" buttons. On
| 0010 clicking "save" button, the system performs of filled data and saves it.
Each pop-up in the system has a "close” button that leads to closing it without any additional
| 0011
| 000X
S 0001 Backend and Frontend ii from each other, communi through API
S 0002 Widely used Frameworks for il i
Service Level / s 0003 Robust and scalable back-end
Performance / Scalability s 0004 Passwords should never be visible in plain text
/ Information Security S 0005 Direct access to database is not possible. Only via API
Requit S 0006 Direct file access of save files is only possilbe via API
S 000X
M 0001 Well documented front-end
M 0002 Well documented back-end
M 0003 Well documented APIs
Support and Y 0004 {All static data should be easily and
i M 0005 API should be versioned so it can be updated
Requirements M 0006 All used packages and plugins should be listed for easy upgradability
M 0007 A should always be to easily follow changes
M 000X

ONBOARDING

1.0 Onboarding

3.1.4 Credits
3.1.5 News

31 Avoue 115 i/ Sinup aoprotie

1.1 Sign in / Sign up

i
1
1
1 177 cookie Notice 171 Homepage Main Navigation
1
1 2.0 Explore Avatar
1 —-——— 21 Ideas 4.0 Profile
[} 3.0 Create 4.0.x Preferences
[} 3.1 About 4.1 Friends
1 1.1.1 Sign up
: 1.1.0 Login
H —_— E— o—
1 Footer Navigation
1
o . . About
i T Comuniy Guidenes 7074
1 3.1.1 For Parents 3.0.1 Examples 7.1 Contact Us
1 3.1.2 For Educators 3,03 Tutorials
] 3.4.3For Developers 55 ciovicrice
1
1
1
\

TIGERJYTHON COMMUNITY

USER EXPERIENCE STORYBOARD V1.0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Legal 1
6.0 Terms of Use 1
6.1 Privacy Policy 1
6.2 Brand Guide 1
1

1

1

1

_!

i
I
I
I 1.1.0 Login 111 Sign Up
I
I
1 ——— [pp——
I
| : \
I —
1 Forgot Password
I
I -
- e

I
I
I
I
I
1 £ Login £ Signup
I
I
I
I
| =
1 Forgot Password Set Password Usage Agreement
I
! B
I —
I
I
I
I
! - T —
I -

-
I
I
I
1 - e
I
: £¥ Request Reset-Token 23 Setnew Password £¥ Accept Community Guidelines
I
I
I
I N
I
I
\

4.0Profile

1.2 Community Guidelines

Community Guidelines

COMMUNITY TIGERJYTHON COMMUNITY

USER EXPERIENCE STORYBOARD V1.0

2.0 Explore

i 1
1 I
1 I
1 200 Explore Create Post I
1 1
o
: R No Module Found :
1 - 1
1 — olreatePost 000 1
| o
D EEE '
1 1 View Post —— I
1 1
1 7' 'S ~ 1
1 1
1 -~ a a 1
1 S ——— 1
o2
1 I
1 I
1 £¥ search ¥ Create Post]
: £ Filter :
1 1
1 1
: Post View 21 Edit Post :
| AT ST |
1 [[I
1 o — I
1 1
1 1
1 - 1
1 - oUsername 1
1 r’'S I
1 — 1
. Report
i | S |
1 1
1 1
: £ Comment 23 EditPost :
1 £} Delete Post 1
1 I
1 I
1 I
1 1
\ !
2.1Ideas 2.2 Report Post
i 1 i 1
1 I 1 1
1 I 1 1
1 Create Idea 1 I Report Post 1
1 1 1 1
1 1 1 oo 1
1 R 1 I I
\ — H 1 1
1 Create Idea | 1 1
r——
1 1 1 1
1] 1 1
1 View Idea — 1 1 1
1 1 1 1
1 1 1 1
1] 1 1
1] 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 £¥ Search £ Create ldea 1 1 £¥ Submit Report 1
1 1
! £ Fiter ! 1 1
1 1
I I . o
1 I
! T idea Post Edit Idea |
| ST |
1 = 1
1 o I
1 1
1 e 1
1 — - . 1
1 (2] a oUsemame 1
1 2] o N\ - e 1
1 (2} -~ I
1 (2] —_— I
] [} DREEWK 1
1 (2] I
1 1
1 I
1 £ Comment £} Editidea I
1 I
] £3 Delete Idea 1
1 I
1 1
1 I
1 1
\ l

43 pubtc e

USER EXPERIENCE STORYBOARD V1.0

TIGERJYTHON COMMUNITY

INFORMATION

3.0 Create

8
=
g
2
]
=~

]

Tutorials

£¥ search

£ Filter

K]
o
§
x
a

30,

]

Examples

£ search

£ Filter

301

Create

3.1 About

About

310

o
s
=4
<

News

315

2
o
a
S
[
>
o
[=)
=
S
m

For Educators

For Parent

311

3.2 Statistics

n Statistics

USER TIGERJYTHON COMMUNITY

USER EXPERIENCE STORYBOARD V1.0

4.0 Profile

Profile {1171 change Avatar

£¥ Upload Avatar

! ! |

Update Profile Change Password Preferences Public Preview
= = 2
R R PR

£¥ Update Profile £¥ Change Password

£ Delete Profile

4.1 Friends 4.2 Followers

Followers

2009
e0ee

4.3 Public Profile

4.3 Public Profile

4.1.1 User Chat

o)
|I

£ Askas Friend

£ Follow

MODULES TIGERJYTHON COMMUNITY

USER EXPERIENCE STORYBOARD V1.0

5.0 Modules 5.1 WebTigerJython
i 1 i 1
1 1 [} I
1 1 [} I
1 70 Module List {571 create Module 1 I 71 WebTigerlython I
1 1 [} I
1 1 I I
1 i S 1 I |
1 1 I I
1 — 1 I I
1 1 1
| | |
1 1 [} I
1 1 [} £ Python IDE I
1 e 1 [} I
1 - 1 [} I
1 —_——— 1 \ !
1 1 o -
1 1
1 £ search 13 Create Post 1
: 23 Filter :
1 1
1 1
: Module View Edit Module :
1 1
1 I IR 1
1 o — 1
1 — |
1 1
1 1
: —— 1 egit Module code

O———diModueCode
1 1
I — 1
1 - 1
1 1
1 1
1 1
: €3 Delete Module £ EditPost :
1 1
\ !
6.0 Terms of Use 6.1 Privacy Policy 6.2 Brand Guide
i \ i \ i \
1 I 1 I 1 I
1 1 1 1 1 1
1 70 Terms of Use 1 1 Privacy Policy 1 1 Brand Guide 1
1 I 1 I 1 I
1 1 1 1 1 1
1 ———— 1 1 ———— 1 1 ———— 1
1 — | 1 — | 1 — |
1 1 1 1 1 1
1 1 1 1 1 1
1 I 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 I 1 I 1 1
] I 1 I 1 I
1 1 1 1 1 1
1 I 1 1 1 1
1 I 1 I 1 I
1 1 1 1 1 1
1 I 1 1 1 1
\) \) \)
7.0 FAQ 7.1 Contact Us

i \ i \
1 I 1 I
1 1 1 1
1 FAQ 1 1 Contact Us 1
1 I 1 1
1 1 1 I
1 e 1 1 e I
1 — | 1 — 1
1 [1 1 1
1 1 1 I
1 I 1 I
1 1 1 I
1 1 1 1
1 —_— I 1 1
1 I 1 1
1 1 1 - e 1
1 I 1 I
1 I 1 1
1 I 1 1
1 I 1 £ Contact Form 1
\) 1 1

o - 1 1

\ !

Version 1 f!’; tigerjython

Brand
Guildelines

IDENTITY MANUAL

Design by Raphael Koch, 8 December 2019

Version 1

01

Brand
Personality

02

Brand
Colors

03

Logo &
Usage

04

Font
Pairings

!”; tigerjython

Design by Raphael Koch, 8 December 2019

Page 2 of 16

Version 1 '!’; tigerjython

Brand
Personality

Design by Raphael Koch, 8 December 2019 Page 3 of 16

Version 1 '!’; tigerjython

Design by Raphael Koch, 8 December 2019 Page 4 of 16

Version 1 '!'; tigerjython

Tigers & Jungle

TigerJython is meant for young people to learn the basics about
programming. To empathize with this aspect, the main color palette
of TigerJython contains fresh and bright colors.

The name TigerJython is a combination of “Tiger” and “Jython”,
which is derived fro “Python”. Tigers and Pythons as generally
associated with Jungle that is why “Jungle” is a major topic in the
identity of TigerJython.

The Tiger was also chosen as the mascot of TigerJython. It is
generally depicted as a teenager to further empathize the general
age of TigerJyton’s users.

Design by Raphael Koch, 8 December 2019 Page 5 of 16

Version 1 J’; tigerjython

020

Design by Raphael Koch, 8 December 2019 Page 6 of 16

Version 1 f!’; tigerjython

Primary Colors

The primary accent of TigerJython is “International
Orange”. Itis a bright and attention catching color.

Further “Dark Puce” and “White” were chosen to))
extend the primary colors to a complete set of the International Orange Dark Puce White

colors of a tiger. #FF5200 #483D3F #FFFFFF

Design by Raphael Koch, 8 December 2019 Page 7 of 16

Version 1

Secondary
Colors

The Secondary Colors extend the set not only with
colors used for the Jungle theme, but also defines
colors to ease the usage of the set in cases such

as code highlighting.

Design by Raphael Koch, 8 December 2019

Apple Green
#7CB518

Hunter Green

‘\‘\.‘1) ““‘\u) D
HO540DOD

4!’; tigerjython

Rich Electric Blue
#O58ED9

Red (RYB)
#FF1B1C

Jazzberry Jam

Selective Yellow
#EEB902

Page 8 of 16

Version 1

Gray
Colors

4!"; tigerjython

#454545 #C0CoCo

#606060 #D8D8D8

#808080 #EGEGEG

#9A9A9%A #FOFOFOQ

Design by Raphael Koch, 8 December 2019

Page 9 of 16

Version 1 J’; tigerjython

03

Design by Raphael Koch, 8 December 2019 Page 10 of 16

Logo &
Usage

Version 1 f’; tigerjython

TigerJython "” tigerjython
Logo)

tigerjython

Design by Raphael Koch, 8 December 2019 Page 11 of 16

Version 1

Logo
Construction

<

4!"; tigerjython

Design by Raphael Koch, 8 December 2019

Page 12 of 16

Version 1 'f’; tigerjython

Logo
Whitespace

!" tigerjython

Design by Raphael Koch, 8 December 2019 Page 13 of 16

Version 1 t!’; tigerjython

Font
Pairing

Design by Raphael Koch, 8 December 2019 Page 14 of 16

Version 1

Aa

Hind

The quick brown fox

jumps over the lazy dog.

1()*&/,<>+-=
1234567890

Design by Raphael Koch, 8 December 2019

f’; tigerjython

Page 15 of 16

Version 1 f’; tigerjython

Aad

Source Sans Pro

The quick brown fox
jumps over the lazy dog.
() &/, 5" <>+-=
1234567890

Design by Raphael Koch, 8 December 2019 Page 16 of 16

	Contents
	Introduction
	The Goal of TigerJython Community
	Related Work
	Project Outline

	Specification and Design
	System Design
	Requirements
	System Architecture

	User Experience
	Fields of UX
	Information Architecture
	Interaction Design

	User Interface
	Visual Language
	Wireframes
	Mockups
	Prototypes

	Implementation
	Front-End
	Introduction
	Set-up
	Features

	Back-End
	Procedure
	Structuring
	Features of the API

	Findings
	Vulnerabilities
	Cross-Site Scripting (XSS)

	Data Privacy
	User protection
	Multi Module Dependencies

	Misuse Prevention

	Conclusion and Future Work
	Conclusion
	Difficulties during Implementation
	Future Work

	Bibliography
	Appendix

